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Surface waves travelling in water of finite depth may be scattered by a region of 
undulating bottom topography. The present study is concerned with the idealized 
two-dimensional situation in which long-crested surface waves are incident upon a 
patch of long-crested regular bottom ripples. The principal question examined 
concerns the amount of incident wave energy that is reflected by the ripple patch. 
Linear perturbation theory is used to show that the reflection coefficient is both 
oscillatory in the quotient of the length of the patch and the surface wavelength, and 
also strongly dependent upon the quotient of the surface and bed wavelengths. In  
particular, there is a Bragg resonance between the surface waves and the ripples, 
which is associated with the reflection of incident wave energy. A secondary question 
concerns the nature of the wave field in the immediate vicinity of the ripple patch. 
In  resonant cases, it  is shown how the partially standing wave on the upwave side 
of the ripple patch gives way, in an almost linear manner over the patch itself, to 
a progressive transmitted wave on the downwave side. The theoretical predictions 
are compared with an extensive set of laboratory observations made in a wave tank, 
Comparisons relating both to the reflection coefficient, and also to the wave field over 
the ripple patch, are shown to give consistently good agreement. Finally, the 
implications of the results for sediment transport on an erodible bed are examined. 

1. Introduction 
When surface waves are incident on a region of undulating seabed topography, it 

is well known that wave energy may be scattered by the bedforms. In  general, 
incident waves travelling onto a bed roughness patch from any one direction may 
be scattered into any other direction. For large roughness patches, this problem has 
been treated by Long (1973), who examined the case of surface waves propagating 
over an arbitrary spectrum of bottom perturbations. A rather simpler situation, 
which is of particular interest to workers in the field of sediment transport and which 
is treated here, is that in which long-crested waves are incident upon purely 
transverse bed features. I n  this case, there are only two types of interaction between 
the waves and the bed, namely back-scatter (wave reflection) and forward-scatter 
(wave transmission). One reason why this problem is of interest is that, on erodible 
beds, there is a suggestion of a coupling between wave energy reflection and bedform 
growth, which may have significant implications for coastal protection. 

The present study is concerned with the interaction between surface waves and 
a pre-existing (fixed) pattern of undulations on the bed. In  practice, such a pattern 
may comprise shore-parallel bars (Short 1975), or tidally generated features such as 
sandwaves (Langhorne 1982), lying transverse to the direction of wave propagation. 
The study arose from some theoretical predictions (Davies 1 9 8 2 ~ )  for the reflection 
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coefficient of a fixed patch of ripples on an otherwise flat bed. In the present paper, 
these predictions are supported by an extensive set of measurements carried out in 
a wave tank. (Some preliminary aspects of this investigation were described briefly 
by Heathershaw (1982).) I n  addition, in the light of some results from the experiments 
which were outside the scope of the original theoretical study, the theory has been 
extended to enable comparisons between measured and predicted wave properties 
both above the ripple patch (referred to as the ‘near field’), and on either side of it 
(the ‘far field’). 

In  the two-dimensional problem considered by Davies (19824, the interaction 
between surface waves and a patch of bottom ripples was examined on the basis of 
linear perturbation theory, and results were obtained for the reflected and transmitted 
waves for the ‘far field’, well away from the region of bed disturbance. Although the 
theory was strictly applicable only to small roughness patches, the results indicated 
that, in certain circumstances, very few ripples may be needed to produce a 
substantial back-scattered wave. Firstly, it was shown that the reflection coefficient 
is oscillatory in the ratio of the surface wavelength to the length of the roughness 
patch and, secondly, that  i t  is resonant if the surface wavelength is twice the bed 
wavelength. Taken together, these two effects produce a rescnant peak near this 
critical ratio of wavelengths, the width of which decreases, and the intensity of which 
increases, as the number of ripples in the patch increases. Both the oscillatory nature, 
and the resonance, of the reflection coefficient have been established in a number of 
previous related studies. The oscillatory nature has been identified by, for example, 
Kreisel (1949), Newman (1965), Mei & Black (1969) and Fitz-Gerald (1976) and also, 
for long surface waves, by Jeffreys (1944). The possible importance of the Bragg 
resonance was pointed out by Ursell (1947). More recently, i t  has been central to 
Long’s (1973) study, it has been considered in a water-wave application by Dalrymple 
& Fowler (1982), and it  has been discussed by various authors in a wider context (e.g. 
Beckmann & Spizzichino 1963; Fortuin 1970). It is believed, however, that there has 
been no previous attempt to  combine the two effects in a single theory (see the 
literature review of Davies 1980). 

Results for the ‘near field ’, over the ripple patch, were presented by Davies (1982 b ) .  
As expected from previous studies, the interaction between surface waves and 
sinusoidal ripples was found to give rise to two new waves with wavenumbers equal 
to the sum and difference of those of the surface waves and the bedforms. The theory 
in this paper produced a physically unrealistic result a t  resonance, as a result of the 
assumption that the ripple patch was of infinite horizontal extent ; in particular, i t  
produced an infinite reflection coefficient for bed wavelengths equal to exactly one 
half of the surface wavelength. The nature of this resonant interaction has been 
examined recently by Mitra & Greenberg (1984). 

I n  $2 the results of the two earlier studies (Davies 1982a, b )  are drawn into a single 
framework. Essentially, the results of Davies (1982a) for the ‘far field’ are extended 
to some considerations of the ‘near field’, but for a physically realistic ripple patch 
of finite extent. I n  $2.1 the formulation is discussed, and the problem of progressive 
waves incident upon a patch of sinusoidal ripples is considered. Throughout the study, 
two particular cases are treated. I n  the first case, the incident waves are assumed 
to undergo no attenuation in amplitude as they travel across the ripple patch. This 
amounts to the use of the theory in a pure form; but, in cases in which there is a 
substantial reflected wave, i t  results in an imbalance between the incident, reflected 
and transmitted wave-energy fluxes. The second case treated is that  in which an 
energy balance is imposed on the solution by an approach suggested by Davies 
(1982a). This assumes, with good justification as it turns out, that the attenuation 



Surface-wave propagation over sinusoidally varying topography 42 1 

i 

of the incident-wave amplitude is a linear function of distance across the ripple patch. 
I n  $2.2 the wave reflection coefficient is discussed and results for the surface elevation 
are presented. Since we are concerned with an irrotational theory, we take no account 
of the presence of the (thin) wave boundary layer above the impermeable bed. More 
importantly, we assume that the flow above the ripples is always non-separating (see 
$5.1). I n  $3  the experimental set-up is described, and in $4 the results are presented. 
Initially in $4, results for the reflection coefficient are compared with theoretical 
predictions. Next, measured elevations throughout the wave tank are examined. 
Finally, in $5, the results are discussed, and their implications for bedform stability 
and sediment movement are considered. 

2. Theory 
2.1 . FormuEation 

As depicted in figure 1, the bed surface is assumed to comprise a patch of periodic, 
two-dimensional, ripples on an otherwise flat bed, in water of constant mean depth 
h. It is assumed that the flow is two-dimensional and irrotational, so that Laplace’s 
equation is satisfied in $9 by the velocity potential $(x, y, t )  : 

Vz$ = O  in 9. (1) 
The departure of the water surface from its mean level (y = 0) is taken as ~ ( x ,  t ) ,  and 
that of the bed surface from its mean level ( y  = -h)  as <(x). The steady-state results 
obtained here are based upon perturbation expansions of $, 7 and g, in powers of a 
small parameter 6, which is later identified with ratios of the various lengthscales in 
the problem : 

( 2 )  
I n  this approach, bot,tom-topography variations are regarded as small perturbations 
on a plane surface. In  particular, from the condition that the component of fluid 
velocity normal to the bed must vanish on the boundary, the interaction between 
the (first-order) flow, which would be present without the boundary perturbations, 
and the perturbations themselves, is treated as a new source of (second-order) fluid 
motion situated on the plane surface. 

$ = + €2qh2 + . . . , 7 = €TI + €2T2 + . . . , < = €& + €y2 + . . . . 

The exact boundary conditions at the free surface and the bed are as follows: 
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where t is the time, g IS the acceleration due to gravity, and the subscripts indicate 
differentiation. I n  the approach adopted here, the kinematical conditions (3) and ( 5 ) ,  
and the pressure condition (4), are satisfied at the mean surface and bed levels y = 0 
and y = - h respectively, by the introduction of Taylor expansions. In particular, (2) 
are used to reduce the original nonlinear problem to a series of linear problems, the 
first to order 6 ,  the second to order e2, and so on (see Davies 1980). 

The governing equation and boundary conditions, correct to order 6 ,  are 

V 2 $ 1 = 0  in - h < y < O , - c o < x < c o .  (6) 

Tlt+$ly=O on y = 0 ,  (7)  

gvl-$lt = 0 on y = 0,  (8) 

# l y = O  on y = - h .  (9) 

The problem, correct to order ez,  is made up oftwo separable parts. One is well known 
(see e.g. Peregrine 1972) as Stokes’ theory to the second order of approximation, and 
i t  concerns the steepening of the surface wave crests and the flattening of the troughs, 
above a bed which is flat. The other expresses the interaction between the first-order 
motion O(e) and the undulations O(e) on the bed. It is the solution of this second part 
of the problem that is relevant here. The governing equation and boundary 
conditions, correct to order 2, are therefore taken as follows: 

V 2 $ 2 = 0  in - h < y < 0 , - m < x < m ,  (10) 

v2t+$22/ = 0 on y = 0, (11)  

gy,-$,t = 0  on y = O ,  (12) 

$2y+cl$l2/2/-$lzclz = 0 on Y = --h. (13) 

The boundary conditions a t  the free surface, (1  1 )  and (12), are as in the problem O(e), 
while in (13) the effect of the rippled bed is apparent. The governing equation and 
boundary conditions O(e3) ,  which are not stated here, have been discussed by Davies 
(1980). 

The bed surface depicted in figure 1 is prescribed, to order e, about its mean level r 0 in L , < x < c o  

(y = -h)  as 
0 in - o o < x <  L,, 

&(z) = Y ( x )  in L, d x < L,, (14) 

It follows that (13) may be rewritten as follows: 

0 in - m < x <  L,, 

q52y = - Vo(z,t)  in L, < z < L,, on y = -h,  (15) 

(16) 

0 in L , < x < o o  1 
where 

The effects on the fluid as a whole of this vertical velocity perturbation at the bed 
are described by (lo)-( 12). By the nature of the problem, i t  is required that the waves 
in the perturbation solution satisfy the radiation condition ; in other words, these 
waves are required to be outgoing from the region of bed disturbance. 

V&, t )  = -$1&, -h,  t )  Y,+$,,,(X, -h,  t )  Y .  
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as a periodic function of time and seek a steady-state solution 
of (10)-(13), we find, for reasons that are well known, that this solution is indeter- 
minate. We therefore employ the device (Lamb 1932, Art. 232) of introducing into t,he 
formulation a small amount of friction proportional to the relative velocity. Although 
the coefficient of frictionp is set ultimately to zero, the device ensures the convergence 
of the integrals arising in the analysis, and i t  clarifies the way in which the radiation 
condition can be satisfied. 

We assume further that  (b2 is bounded and also that q52, and its first and second 
derivatives, tend to zero as IxJ+oo in such a way that Fourier transforms exist in 
x ;  the inclusion in the analysis of the linear friction term justifies the latter 
assumption. If Fourier transforms are taken of the governing equation (10) and of 
the boundary conditions, and if the solution is made specific to waves of frequency 
a, it  may be shown that the inverse transform of the velocity potential is such that 
q52(x, y, t )  is given by 

If we prescribe 

where 6 is the transform variable and 

L, 
A ( [ )  eiat = - jLl Vo(x, t )  eitz dx. (18) 

The general integral (17)  determines the solution for both the ‘near’ and ‘far ’ fields. 
If, for convenience, Vo(x, t )  is taken as the real part of a complex function, this results 
in a complex form for q52, from which the required velocity potential is obtained by 
taking the real part. 

The particular form of the function A(6)  depends upon both the nature of the 
bedforms and the unperturbed first order motion. First, we assume the bedforms to 
be sinusoidal ripples such that Y ( z )  in (14) is given by 

Y ( z )  = b sin (Zx+S), (19) 

where b is the ripple amplitude, l is the ripple wavenumber and S is an arbitrary phase 
angle. For continuity of bed elevation at  the ends of the roughness patch, we write 

(20) 

where m is an integer. Thus there are m ripples in the patch, which is centred on x = 0 
and is of length 2L. Secondly, we assume, a t  least initially, that the incident waves 
in the solution, to order E ,  are given by 

(21) v1 = a sin ( k x - a t ) ,  

where a ,  k and CT are the surface-wave amplitude, wavenumber and frequency, 
respectively. The corresponding velocity potential satisfying (6)-(9) is given by 

cos (kz-at) ,  
ga cosh {k(y + h)}  
a cosh (Ich) 

q5 =- 

where u is related to h and k by the dispersion relation 

a2 = gk tanh (kh) .  (23 1 
(It is important to note that the dispersion relation (23) is still valid in the solution 
to order s2.)  



424 A .  G. Davies and A .  D. Heathershaw 

The function A ( t )  may be obtained on the basis of (18) from (14), (16), (19), (20) 
and (22). The perturbation potential $, may then be obtained for both the near and 
far fields, subject to  the condition that solutions for the far field must only comprise 
waves satisfying the radiation condition as x+& CO. If the amplitudes of these 
outgoing waves are not small compared with the amplitude a of the incident wave 
in the first-order solution, then the velocity potential correct to second order + $,) 
will, in general, violate the overall requirements of energy conservation in the 
solution. Strictly, in the assumed absence of any mechanisms of dissipation, the 
incident wave-energy flux must be balanced by the reflected and transmitted energy 
fluxes. A procedure to impose an energy balance on the solution was proposed by 
Davies (1982a), in which the surface-wave amplitude in the first-order solution was 
assumed to decrease linearly from its starting value a a t  x = - L to a new lower value 
at x = + L. There is strong justification for this assumption of linear attenuation of 
wave amplitude across the ripple patch, at least in resonant cases, both from the 
results for the wave-reflection coefficient (see $2.2.1) which indicate a linear increase 
in the reflected wave amplitude aR with the number of ripples in the patch, and also 
from the later experimental results (see $4). Details of the implementation of the 
procedure to impose an  energy balance have been discussed by Davies (1982a) and 
Davies & Heathershaw (1983). 

The integral in (1  7 )  has been evaluated by contour-integration procedures. 
Initially, the transform variable 6 has been taken as the real part of a complex 
variable h = t + i x ,  and the path of integration - m < 6 < 00 has been replaced by 
a closed contour in the h-plane. This contour has been chosen as a semicircle of radius 
r ,  which includes the portion - r  < 6 < r of the real axis of A ,  and is taken in either 
the upper or lower half-plane such that a physically admissible solution is obtained. 
Ultimately, as r +m, the required path of integration, namely the c-axis, becomes 
part of the complete contour. Since the semicircular portion of the contour makes 
a contribution to the solution which tends to  zero as r+oo (see Davies 19801, the 
required result for the velocity potential is simply equal to the result obtained by 
integrating around the complete contour. I n  practice, i t  is necessary to separate the 
integral in (1’7) into two parts I1 and I, and to make an  appropriate choice of contour 
for each part, such that a physically admissible solution is obtained in each of the 
regions x < - L, 1x1 < L and x > L. (The integrand of I, - exp { -x(L-x)} and of 
1, N exp {x (L  + x)}.) The role of the linear friction term at this stage in the argument 
is to displace certain singularities of each integrand either into, or out of, the chosen 
contours. This occurs in such a way that, ultimately, bounded solutions satisfying 
the radiation condition are obtained as p+O. 

In  summary, for the general case in which 1 + 2k (and as p+0) ,  the perturbation 
solution comprises the various parts shown in diagrammatic form in figure 2. Here 
each arrow represents a propagating wave mode, and against each arrow is indicated 
the pole position in the h-plane with which the wave is associated. The pole position 
governs the wavenumber of each mode, and also the direction of travel of the wave 
(as indicated by the arrow head). Note that, from integral I,, there is a wave 
associated with the pole at - k which travels off the patch in the negative x-direction. 
Similarly, from integral I,, there is a wave associated with the pole at + k  which 
travels off the patch in the positive x-direction. I n  1x1 < L there are contributions 
from these two poles, as well as from the poles a t  k + l .  The sum (k+Z)-wave travels 
always in the onward transmitted direction, while the difference ( k  - I)-wave travels 
either in the onward transmitted direction or is back-reflected, depending upon 
whether its wavelength is respectively less than or greater than that of the ripples. 



Surface-wave propagation over sinusoidally varying topography 425 

Integral 
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Integral 
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Trapped waves 
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1x0 

Trapped waves 
- 

FIGURE 2. Wave modes in the perturbation solution for the general case in which 1 $: 2k.  Each arrow 
represents a propagating wave mode, and against each arrow is indicated the pole position with 
which it is associated. The direction of travel is indicated by the arrow head. The trapped wave 
modes are confined to the regions near the ends of the ripple patch. 

The poles on the imaginary axis of h (labelled ixo), which are associated with trapped 
waves centred on both ends of the ripple patch, ensure the smooth continuation of 
the solution a t  x = & L. It remains only to determine the residues of the poles 
identified above ; the procedures involved have been discussed in detail by Davies 
& Heathershaw (1983). 

As 1+2k the position of the pole a t  h = k-1 tends towards that of the pole a t  
h = - k .  In  this special case it is necessary to  recalculate the results both for the region 
upwave of the ripple patch (x < - L ) ,  and for the region of the ripple patch itself 
(1x1 < L) .  On the downwave side of the ripple patch (x > L ) ,  the solution is 
independent of the poles a t  h = - k and h = k - 1, and the result for the general case 
in which 1 -+ 2k remains unaltered. 

2.2. Theoretical results 

2.2.1. The rejlection coeflicient 

We state initially results which are obtained from the asymptotic behaviour of the 
solution for the potential $2 as x+- 03 and as x++ 03. In  particular, we define the 
wave-reflection coefficient from the potential of the outgoing perturbation waves in 
x < - L and from the incident waves in the first-order solution. For the general case 
in which 1 -+ 2k and in which the incident waves are unattenuated over the ripple 
patch, the former waves are given in the limit x+- 03 by the real part of 

(24 ) 
2 cash { k ( y  + h)}  C,( - l)m 2k/ l  

sin (2kL)  ei(ut+kz), 
’2(x’  ” t ,  = 2 k h f  sinh (2kh)  (2k/ l )*-  1 

where 
gabk 

cr cosh ( kh )  ‘ 
c, = 

The reflection coefficient KR is then defined as the quotient of the coefficient of 
cos ( v t  + kx) in (24)  and the equivalent coefficient for the incident waves in ( 2 2 ) ,  such 
that 

2kh+ sinh (2Lh) ( 2 k / l ) 2 -  1 ‘-’”’ ‘ R -  a - 

For the special case in which 1 = 2 k ,  the reflection coefficient becomes 

m7t: 
( I  = 2k) .  

2bk 
EL - 2kh+ sinh (2kh)  2 K -  
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Equivalent results may be obtained for incident waves that are attenuated over the 
ripple patch. These results differ significantly from those given by (25) and (26) only 
if K R  2 0.4. 

From (26) i t  may be noted that,  at resonance when 1 = 2k ,  the reflection coeficient 
increases linearly in the number of ripples (m)  in the patch. For this reason, the earlier 
assumption of linear attenuation of incident-wave amplitude across the patch is 
reasonable, a t  least near to resonance, More generally, (25) reveals that, while the 
maximum value of KR is found near the critical ratio of wavenumbers 2k/l= 1 ,  the 
reflection coefficient is also oscillatory in the ratio of the length 2L of the ripplc patch 
to the surface wavelength. 

As far as the outgoing waves on the downwave side of the ripple patch are 
concerned, i t  may be shown that, for incident waves that are unattenuated over the 
patch, the potential in the asymptotic limit x++ 00 is given by 

42(x, YI t )  = 0. (27 ) 

It follows from (24) and (27) that  the perturbing vertical velocity distribution 
prescribed a t  the bottom boundary is such as to produce an outgoing wave in the 
upwave direction only. However, in the case of attenuated incident waves, there is 
a small outgoing wave on the downwave side, the properties of which have been 
discussed by Davies (1982 a) .  

2.2.2. Properties of the waves over the ripple patch 

In  considering the properties of the waves over the ripple patch, we utilize the 
complete solution in - 00 < x < 00. The elevation of the first-order incident waves 
is given by (21), and the elevation qz(x ,  t )  in the perturbation solution is obtained from 
(12) (only the real part of which is of interest). I n  figures 3 and 4 we show results 
for a typical case near to resonance which relates to one of the later laboratory 
experiments. The parameter settings are as follows: ripple amplitude b = 5 em, ripple 
wavelength A, = 2x11 = 100 em, the number of ripples m = 10, the water depth 
h = 41.7 em, and the wave period T = 2x/v = 1.23 s, from which i t  follows from (23) 
that  2k/l= 0.985. The incident waves are assumed to be unattenuated across the 
ripple patch, and so, from (25), the reflection coefficient is K ,  = 0.509. 

In  both figures 3 and 4, results for the normalized elevation q ( z , t ) / a  have been 
expressed in the form 

(28) -- ~ ' ~ 7  ' )  - ~ , ( x )  cos (at) + ~ , ( x )  sin (a t ) .  
a 

The curves plotted in figure 3 are for the perturbation solution only, and show the 
instantaneous elevations E,(x) ,  E,(x),  -E,(x) and -E,(x), a t  the phase angles at = 0, 
in, n and zn respectively, together with the en;elope curves for wave elevation given 
by j-(E:+Ei)i. The results show that, on the downwave side of the ripple patch 
(x > L) ,  the water surface is motionless as required by (27). Between the downwave 
end of the patch (x = L )  and the upwave end (x = -L) ,  the perturbation wave 
increases in size. Thereafter, in x < - L ,  the wave propagates away from the ripple 
patch in the negative x-direction. The result of superimposing the perturbation waves 
and the incident waves is shown in figure 4. The evolution of a partially standing-wave 
pattern is apparent in 1x1 < L,  with a fully developed partially standing wave being 
present in x < - L. At the ends of the patch (x = f L), a smooth transition in the 
solution is obtained as a result of the trapped wave modes associated with the poles 
on the imaginary axis of h (see figure 2).  The detailed properties of these trapped 
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//,,,,, ,,,//,, 
Flat bed 

Ripple patch 
FIGURE 3. Perturbation solution for the near-resonant case in which m = 10, L = 500 cm, b = 5 cm, 
A, = 100 cm, h = 41.7 cm and T = 1.23 s (2k/Z = 0.985). The development of the reflected wave 
in the interaction region is illustrated by the instantaneous surface wave profiles Ifr El ,  f E, (see 
(28)), and by the envelope of wave elevation & (ET+E$. There is an almost linear increase in the 
reflected wave amplitude between z = + L  and x = -L. Thereafter, in x < -L,  the reflected wave 
is an outgoing wave, with amplitude uR = 0.509~. 

Envelope of 

Reflected wave I - I 
I Interaction region 

Ripple bed 

Transmitted wave 
d 

x = L  --_- ,r----- 

Flat bed 

FIGURE 4. Superimposition of the first order and perturbation solutions (see figure 3 for the 
perturbation solution) for the near-resonant case in which m = 10, L = 500 cm, b = .5 cm, 
A, = 100 cm, h = 41.7 cm and T = 1.23 s (2k/Z = 0.985). The instantaneous profiles of wave 
elevation + E l ,  E, (see (28)) are plotted, togetherwith theenvelope ofwave elevation Ifr (E: + E$. 
The development of a partially standing-wave structure between x = + L  and x = - L  is evident. 

modes have been illustrated by Davies & Heathershaw (1983). In  the example in 
figures 3 and 4, their combined effect a t  both ends of the patch (x = f L )  is of’ the 
order of 1 yo of the amplitude of the incident wave. 

2.4.3. Limitations on the solution 
There are certain physical limitations on the solution which arise both on account 

of terms dropped in linearizing the boundary conditions, and also on account of the 
general requirement of the method that The limitations of the former kind 
have been discussed in detail by Davies (1980, 1982b) and may be stated as a set 
of simple conditions on the various lengthscales in the problem, namely 

< 

a a  b 
ak ,  - ~ 

h’ k2h3 ’ 
b l ,  - 61% << 1. 

h’ 
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The small parameter E introduced in (2) to set up a basic hierarchy of terms in the 
solution is connected with the smallness of each of the parameters listed. However 
it is not necessary, or possible, to identify E with any one of these parameters, and 
i t  is not a requirement of the method of solution that this be done. In  addition to 
the above conditions, the analysis breaks down if k 9 1. 

< I$J, imposes a t  the outset a condition on the size of 
the reflected wave. I n  its pure form, the theory requires both the reflected and 
transmitted waves in the perturbation solution to be small compared with the 
incident, wave. However, if an energy balance is imposed on the solution, this 
condition may be relaxed to  some extent (see $2.1). In  general, the first estimate of 
aR from the pure theory should be viewed as providing an upper bound on the size 
of the reflected wave; in practice, i t  is necessary to correct' first estimates of aR only 
in resonant cases for which the reflection coefficient is large (KR 2 0.4). It should be 
noted here that the perturbation solution may predict over-reflection ; particular care 
should be exercised in interpreting any results that  suggest that, laRl > a. Finally, 
the present theory is limited by ignoring the effects of energy dissipation by bottom 
percolation and bottom friction. Despite these limitations however, the theory is 
applicable in a variet>y of physically int>eresting cases, including the laboratory 
experiments described in 953 and 4. 

The latter limitation, 

3. Experimental techniques 
3.1. Constvucfion of the ripple patch 

To test the results of 92, and in particular (25) and ( 2 6 ) ,  measurements were carried 
out by one of the authors (ADH) during a visit to the US Army Corps of Engineers, 
Coastal Engineering Research Center, Fort Belvoir, Virginia, CSA. The tests were 
carried out in a glass-walled wave tank, 45.7% m x 0.91 m x 0.91 m (nominally 
150 ft  x 3 f t  x 3 ft). A wavelengt'h of 1 m was chosen for the ripples, and a patch of 
ripples was built into a false bottom in the tank (figure 5).  This wavelength gave 
resonant-wave periods approximately in the centre of the range which could 
rcasonably be tested (about 0.5-3.0 s), and thus permitted a detailed examination 
of the oscillatory nature of the reflection coefficient. The amplitude of the ripples was 
chosen to be 5 cm (a trough-to-crest height of 10 cm). Initially, 10 ripples were built 
in the tank, with later tests being carried out on 4, 2 and 1 ripples. As ripples were 
removed from the patch (see figure 5), they wexe replaced by plywood-covered, and 
sand-filled, sections of false bottom. There was no facility for return flow through the 
false bottom. 

At the end of the tank, a 1 : 10 slope rubberized-fibre wave-absorbing beach was 
built to prevent waves from being back-reflected onto the ripple patch. The beach 
was constructed so that,, at' the highest watcr level examined, the longest-period waves 
would have t'o travel over about twice their own wavelengbh of beach material. 
Shorter-period waves were expected t'o bc more readily absorbed by thc beach than 
these long-pcriod waves. 

3.3. The u w e  generator 

Monochromatic sinusoidal waves were generated using an electrohydraulic pist>on-typc 
wave generator. Wave period settings rould be adjusted in increments of 0.01 s, and 
independent checks on the accuracy of t,hexe settings were carried out in thc rangc 
0.6-3.0 s by timing 30 oscillations of the wave generator bulkhead. The results of this 
investigation indicated agreement to wit>hin f 0.005 s of the nominal wave-period 
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FIGURE 5.  Schematic diagram showing the positions of the  wave gauges in relation to  the ripple 
patch and the beach for (a )  measurements of the reflection coefficientcl of the ripple patch and the 
beach. and ( b )  measurements of the wave field throughout the wave tank. 
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setting. Following a change in the setting, the time taken for the wave system in the 
tank to attain a steady state was usually of the order of 60 s. Since the time between 
successive sets of measurements was in general longer than this (of the order of 3 min), 
the measurements described in $4 were representative of equilibrium conditions. 

3.3. Wave measurements 

Measurements of incident-, reflected- and transmitted-wave elevations were made 
using CERC-type wave gauges, which were of the parallel-wire resistance type and 
had a linear output (Kellum 1956; StafTord 1972). Two sizes of gauge were used. 
Measurements on 10 ripples, and with water depths in the range 25.0-62.5 em, were 
made with gold-plated brass-wire gauges having a nominal length of 50.0 cni and a 
wire spacing of approximately 3.7 em. The wire diameter was approximately 0.25 cm. 
For measurements on 4, 2 and 1 ripples and with water depths in the range 
12.5-50.0 em, miniature stainless-steel wire gauges were used. These had nominal wire 
lengths of 13.0 em, with a wire separation of 1.5 cm and wire diameters of 
approximately 0.10 cm. Comparisons between the small and large gauges showcd 
good agreement. 

To determine reflection coefficients, the method described by Goda & Suzuki (19771, 
which involves the synchronous measurement of surface elevations with a gauge pair, 
was employed. Incident and reflected wavetrains are ideally resolved by a pair of 
wave gauges having a spacing Ax of 0.25Aw, where A, is the surface wavelength. In 
this work, gauge spacings were maintained in the range 0.15 < Ax/hw < 0.35. Tn r) 
pairs of gauges and a single gauge were used to make two types of measurement : 

(a)  measurements of the reflection coefficient both at  a fixed point on the upwa\~\ 
side of the ripple patch, approximately midway between i t  and the wave gc-ncrator. 
and also at a fixed point on the downwave side of the patch, approximately midwaj. 
between it  and the beach, with the fifth (single) gauge positioned midway along the 
patch; 

( b )  measurements of the variation in the reflection coeficient. and in thc wave 
height, over the entire ripple patch and on either side of it, with t h e  fifth gauge 
positioned a t  the foot of the beach. 

These two arrangements are illustrated scherriaticdly in figure 3.  P n  w c h  case. 
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synchronous wave records were obtained by sampling each gauge 16 times per second 
( I6  Hz) for 64 s ,  thus yielding 1024 data points for subsequent analysis by the 
fast-Fourier-transform (FF?’) method. Spectral corficients were then combined to 
yield a reflection coefficicmt for each gauge pair. 

4. Experimental results 
4.1. The refiection copficient of the patch of ripples 

Tnitially, we consider results for the magnitude of the reflection coefficient KR, for 
w hcah wave measurements werc made with a gauge pair positioned approximately 
xriirlway between the wave gencrator and thc upwave end of the ripple patch. The 
variation of IKRl with the ratio of the surface arid ripple wavenumbers is shown in 
figure 6 for m = 10, 4 and 2 ripples. Where practicable, the quotient 2 k / l  was varied 
through the range (0.5,2.5) in steps of 0.01 for m = 10 and 4, and in steps of 0.02 
f o r m  = 2. The appropriate theoretical predictions for K ,  are given by (25) and (26). 

I n  figure 6 ( a )  the measured values of IKRI for m = 10 ripples follow quite closely 
the general trend of the theoretical predictions. The width of the main resonant peak 
is confirwed, and agreement is reasonable for values of 2 k / l  up to about 2 .  For the 
cases of m = 4 and 2 ripples (figures 6b,  c )  the theoretical predictions are again well 
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FIGURE 6 ( b ) .  For caption see p. 432. 

supported by the measurements, particularly in respect of the main resonant peaks. 
However, there is generally more scatter in these cases, probably due to wave-energy 
reflection by the beach. This question is discussed below. I n  each of figures 6(a-c), 
the experimental results are compared with theoretical predictions for incident waves 
which are assumed to be unattenuated and linearly attenuated (see §2.1), over the 
ripple patch. I n  what follows, we refer to such results as being based upon uncorrected 
and corrected theory respectively. I n  the region of the main resonant peaks in figures 
6 (a-c), better agreement is achieved between the measurements and the corrected, 
rather than the uncorrected, theory, as expected. 

Figures 6(u-c) also show the reflection coefficients for the beach, for which wave 
measurements were made with a gauge pair positioned approximately midway 
between the beach and the downwave end of the ripple patch. For the case o fm = 10 
ripples, reflection coefficients for the beach were of the order of KB z 0.1, or less, 
corresponding to about 1 ‘yo in terms of incident wave energy. Tests on 4 and 2 ripples 
showed that measured reflection coefficients were in general of the order of K ,  z 0.2, 
or about 4% in terms of energy. In  the present context, the importance of wave 
reflection by the beach is that it introduces uncertainty into values of the reflection 
coefficient lKRl based upon measurements made on the upwave side of the ripple 
patch. It has been shown hy Dztvies 62 Heathershaw (1983) that the magnitude of 
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FIQURE 6. Results for the reflection coefficients both of the ripple patch (lKRl) and of the beach 
(KB) for: ( a )  m = 10 ripples ( b / h  = 0.16); ( b )  m = 4 ripples ( b / h  = 0.32); (c) m = 2 ripples 
( b / h  = 0.32). The solid and broken curves represent the predictions of the uncorrected and corrected 
theory respectively. Estimates of the sum of the phase angles eI +eR are shown for the case of m = 2 
ripples. 

the true reflection coefficient of the ripple patch, KRT say, has been estimated in the 
experiments only to  within a range of uncertainty around the measured value, KRM 
say, given by KRT = KRM f KBM, where KBM is the measured reflection coefficient 
of the beach (and in which the lower bound is replaced by KRT = 0 if KBM > KRM). 
This result is consistent with the differences between experiment and theory in 
figure 6. Re-reflection of waves by the wave generator is irrelevant in hhis connection, 
provided that equilibrium conditions have been attained in the wave tank (see 53.2). 
Such re-reflected waves merely contribute to the incident wave. 

Figure 6 ( c )  shows the results of wave phase angle calculations made for the system 
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b l h  
FIGURE 7 .  Variation of the measured mean value of lKRl, at or near resonance (2k/Z z i) ,  as a 
function of the quotient b/h of the ripple amplitude 2, and the water depth h, and for different 
numbers of ripples m. Error bars denote plus or minus one standard deviation from the mean. 

of incident and reflected waves measured up-wave of the ripple patch in the case of 
m = 2 ripples. For incident (I) and reflected (R) waves travelling in the + x -  and 
- x-directions, in water of constant depth h, the respective surface elevations may 
be expessed by 

71 = (CI cos (ks-(Tt+eI),  YR = a R  cos (kx+gt+ER), 

where the amplitude and phase angle of the incident wave are a, and eI, and of the 
reflected wave are aR and eR, and where h, k and (T are related by (23). It is simply 
demonstrated that n-phase shifts in the sum of the phase angles eI + eR are associated 
with sign changes in the reflection coefficient K ,  as defined by (25). For the case in 
which m = 2,  the theory suggests that  the sum q + e R  should remain constant in 
0.5 < 2 k / l <  1.5, that there should be n-phase shifts a t  either end of this range, 
constant values of the sum in 0 < 2 k / l  < 0.5 and 1.5 < 2k/ l  < 2.0 and, thereafter, 
for increasing 2 k / l ,  further n-phase shifts a t  2k/l  = 2.0, 2.5, 3.0, _.. . It may be 
observed in figure 6(c )  that e,+eR remains reasonably constant in the range 
0.67 < 2 k / l  < 1.31, and also in the range 1.6 5 2 k / l  < 1.93, and that phase shifts 
occur in thc ranges 0.5 5 2 k / l 5  0.6 and 1.45 5 2 k / l 5  1.55. Although these phase 
shifts are not a t  discrete values of 2k/ l ,  probably due to the presence of the reflected 
wave from the beach, there is a strong suggestion of the predicted behaviour of eI + eR, 
as indicated by the solid-line step function. 

1. In the experimental 
trials, time did not permit detailed measurements of IKRl over an extensive range 
of values of 2kl l  for each combination of values of b / h  and m examined. So, in order 
to determine peak values of /KRl for given h / h  and rn, measurements were made over 
only a limited range of values in the vicinity of the main resonant peak, centred on 

Next, we consider results for resonaht cases in which 2kIl  
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FIGURE 8 (a ,  b ) .  For caption see facing page. 

2 k / l =  1 and representing, in each case, 10 % of the total width of the peak. The 
results shown in figure 7 are means and standard deviations of the measured 
lKRI-values lying within these ranges, and they are compared with both uncorrected, 
and corrected, theoretical predictions for the maximum reflection coefficient. For 
m = 10 ripples the averaged peak values underestimate the predictions of the 
corrected theory somewhat, for example by about 15 2, for h / h  = 0.18. Form = 4 and 
2 ripples the averaged values give generally good agreement with the corrected 
theory. However, form = 1 ripple the measured values consistently overestimate the 
predictions by about 30 y) .  This is probably due partly to the rather unrepresentative 
nature of the measurements, and partly to the e h c t s  of wave reflection by the beach. 
In  conclusion, despite the lack of representative sampling in some cases, the results 
are generally supportive of the two main theoretical predictions evident in figure 7,  
namely 

( a )  that  the peak reflection coefficient increases linearly with the number of 
ripples ; and 

( b )  that for a given number of ripples, and a given ripple steepness, the peak 
reflection coefficient increases both with increasing ripple amplitude and decreasing 
depth. 
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FIGURE 8. Variation of the amplitude of surface elevation throughout the wave tank at or near 
resonance (2k/Z x i ) ,  for different numbers m of ripples and different values of the quotient b / h  
of the ripple amplitude b and the water depth h. Curves A and B represent the wave envelopes 
given by the uncorrected and corrected theoretical results respectively (see 992.2.2 and 4.2). 
T denotes the wave period. 

4.2. Measurements of surface elevation and reJlection coeficient over, and 
on either side of, the ripple patch 

In  order both to  assess whether the measured values of lKRl discussed in 54.1 were 
truly representative of the reflection coefficient, and also to obtain a general 
understanding of the wave field, a series of measurements was made with the gauge 
configuration shown in figure 5 ( b ) ,  which was moved along the tank in steps of I m. 
Examples of the resulting measurements of the amplitude of surface elevation both 
above the ripple patch, and on either side of it,  are shown in figure 8. The observations 
were made a t  or near the predicted resonant peak, and the measured surface 
elevations have been compared with predictions of elevation given by both the 
uncorrected and corrected theory. I n  each case, the incident-wave amplitude used 
in the comparisons has been obtained by averaging the first five values of a,( = a )  
determined from the measurements made on the upwave side of the ripple patch. The 
results form = 2 , 4  and 10 ripples show good agreement with the theory, and indicate 
clearly how the partially standing wave on the upwave side of the ripples gives way 
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FIGURE 9. Variation of the wave-reflection coefficient K throughout the wave tank at or near 
resonance (2k l l  x l ) ,  for different numbers m of ripples and different values of the quotient blh  
of the ripple amplitude b and the water depth h. Solid and broken curves represent the uncorrected 
and corrected theoretical results, respectively (see § § 2 . 2 . 2  and 4.2). On the upwave side of the ripple 
patch, K+lKEl, the ripple reflection coefficient, while, on the downwave side, K +  K, ,  the beach 
reflection coefficient. T denotes the wave period. 
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in a linear manner to a progressive wave on the downwave side (having an envelope 
comprising two parallel lines). On the downwave side, agreement is better between 
the measurements and the corrected, rather than the uncorrected, theory, as 
expected. 

In  general, good agreement has bsen found between the measured and predicted 
positions of the partially standing wave pattern (fixed in space) on the upwave side 
of the ripple patch. This may be seen in figure 8, where the phase angles of the 
measured and predicted envelopes of wave elevation are very similar. In most cases 
however, there is evidence of a small progressive phase shift of 1O-3' for each 
wavelength of the incident wave. For m = 10 ripples (figures 8c-d) ,  this implies 
wavelengths in the experiments which were about 0.G1.7 cm shorter than those 
predicted in the theoretical comparisons based on the nominal wave-period settings. 
Such discrepancies suggest true wave periods which were 0.002-0.006 s lower than 
the nominal values, for typical resonant wavcs with wavelength 200 cm in 50 cm 
depth of water. Since such differences are of the same order as those which were found 
in independent checks on the accuracy of the generated wave period ($3.2), the 
observed disagreements in phase may be accounted for by a small experimental error 
in the wave period setting. However, calculations form = 2 and m = 4 ripples (figures 
Sa,  6) suggest a greater mismatch, possibly of the order of 0.02-0.03 s in the 
wave-period setting. The reason for the poorer agreement in these cases is not clear. 

Reflection coefficients calculated by the method of Goda & Suzuki (1977) are 
normally obtained from measurements made above flat beds, for which there is a fixed 
partitioning of the total wave energy into kinetic and potential energies. For waves 
of small amplitude, these two energies are equal, and results obtained for the 
reflection coefficient K ,  say, are independent of horizontal position x, a t  least if the 
wave measurements are made sufficiently far from the region of bed disturbance, or 
from the structure, being considered. If, however, measurements of elevation are 
made above an undulating bed, the partitioning of the total wave energy will depend 
upon horizontal position, and it follows that K will also depend upon position. Since 
this dependence may be rather complicated, a proper interpretation of K calls for 
a reliable theory for surface elevation as a function of position. Moreover, measured 
values of K will depend upon the gauge spacing. I n  the present context, what is 
obtained by the method of Goda & Suzuki is a modified reflection coefficient, which 
is such that K-t lKRl only on the upwave side of the ripple patch. 

Figure 9 shows comparisons of measured and predicted reflection coefficients a t  
resonance, both over the ripple patch and on either side of i t ,  for m = 2, 4 and 10 
ripples, and for different values of the ripple amplitude to water depth ratio. These 
typical examples are based on the measurements shown in figure 8. Agreement 
between observation and theory is generally good, the best agreement being achieved 
between the observations and the corrected, rather than the uncorrected theory. For 
m = 10 ripples (figures 9c, d ) ,  agreement is consistently good over the ripple patch. 
However, for large IKxI (figure 9d) ,  the measured values of K underestimate the 
theoretical predictions on the upwave side, and overestimate them on the downwave 
side. It is possible that reflection of wave energy by the beach, which manifests itself 
in non-zero values of K on the downwave side, may have provided an unwanted 
contribution to the wave field on the upwave side. In  particular, waves reflected by 
the beach may have interfered destructively with waves directly reflected by the 
ripples. By comparison, figure 9(a),  for m = 2 ripples and b / h  = 0.32, shows tho 
measured reflection coefficients overestimating the theoretical values by significant 
amounts on the upwave side of the ripple patch, reasonable agreement being achieved 
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only over the ripple patch itself. This suggests that the wave reflected by the beach 
may lead to constructive, as well as destructive, interference effects. An alternative 
explanation for the more generally occurring underestimates in the measured values 
of lKRl on the upwave side (figures 9c, d )  is that a non-negligible amount of available 
wave energy may have been dissipated in the tank. The general tendency for values 
of lKRl to decrease towards the wave generator is consistent with this explanation. 
This matter has been treated in detail by Davies & Heathershaw (1983) on the basis 
of estimates of the energy dissipated in the (laminar) boundary layers at the bed, and 
a t  the sidewalls, of the tank. 

5. Discussion 
5.1. The validity of the comparisons 

Before the experiments described in 54 were carried out, i t  was necessary to establish 
that the waves generated in the tank complied with the limitations on the theory 
stated in 52.2.3 (equation (29)). Of these criteria, the one most easily violated was 
that involving the wave steepness ak. Typical wave steepnesses in the experimental 
runs were a t  the low end of the range 0 < ak 5 0.16, well within the limitation above. 
However, in order to establish whether variations occurred in the measured reflection 
coefficient on the upwave side of the ripple patch as the wave steepness increased, 
a series of tests was carried out with m = 10 ripples. For values of IKRl in the range 
0-0.65, the amount of wave reflection remained relatively constant with increasing 
wave steepness, up to values of ak of about 0.16. The results of these tests have been 
presented by Davies & Heathershaw (1983). 

As far as the two remaining criteria involving the wave amplitude a are concerned, 
the criterion involving a / h  was well satisfied, since a / h  was always less than 0.16 and 
was generally much smaller than this limiting value. The criterion involving the Ursell 
parameter a/k2h3 is actually less severe than indicated in (29), and may be expressed 
by a/k2h3 6 (Davies 1982b). The largest value of the Ursell parameter in the present 
experiments was 0.44, for a limiting case in which the surface wavelength was very 
long (A, z 400 cm). More generally, for shorter surface wavelengths, its value was 
considerably less than this. Thus the three criteria involving the wave amplitude were 
well satisfied in the experiments. As a further check on this, the results of spectral 
analysis of the measured data were examined, in order to  investigate the linearity 
of the measured wave field (see $5.2). 

The remaining criteria in (29) involve the ripple amplitude 6 .  Clearly, the ripple 
steepness bl was fixed by the chosen ripple geometry ( b  = 5 cm, A, = 100 cm), so that 
bl = &n. (This value was chosen because of its similarity to actual ripple and 
sandwave steepnesses.) The largest experimental value of the quotient b / h  was 0.4, 
and the largest value of blc was about 0.39. While these values are perhaps larger than 
might have been desirable, the majority of the experiments were carried out with 
significantly smaller values. Moreover, as argued in 5 5.2, spectral analysis revealed 
that the wave field was almost always linear; this would not have been so if, for 
example, b/h had been too large. 

A final limitation on the theory was that the flow above the rippled bed was always 
non-separating. This requirement was satisfied in all of the experimental runs 
described in $4. The criterion for non-separating oscillatory flow above a rippled bed 
is that the ripple wavelength A, is greater than the orbital excursion 2Ah of the water 
particles close to an equivalent flat bed (Ab = Uh/v and Uh = g a k / a  cosh kh) (Sleath 
1975). I n  the present experiments, values of 2Ah/h, were generally 0(10-'), and 
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typically in the range 0.05-0.15. Although the dimensionless parameter 2A,/h, takes 
no account of the presence of the evolving reflected wave over the ripple patch, i t  
is clear that there was no possibility of separation in any of the experimental runs. 
This was confirmed by introducing dye into the flow in some selected cases. 

5.2. The linearity of the measured wave jield 

Calculations of the reflection coefficient were generally made in such a way that the 
final results were relatively insensitive to any redistribution of wave energy from the 
fundamental frequency, into the first and higher harmonics (see Davies & Heather- 
shaw, 1983). However, since the theory in $2 assumes a monochromatic wave field, 
the data was re-examined in a detailed way, in order to identify the presence of 
harmonics. This investigation revealed that, in the overwhelming majority of 
experimental runs, more than 95 yo of the total wave energy was a t  the fundamental 
frequency, most of the remainder being in the first harmonic. This provides a clear 
demonstration of the linearity of the wave field. However, in certain cases, rather 
less energy was found in the fundamental frequency ; in particular, levels of 85-90 yo 
were measured in several runs. The reason for the presence of a significant first 
harmonic in these runs was examined in relation to various of the non-dimensional 
parameters in (29), namely ak,  a /h ,  b/h and bk. However, detailed analysis of all the 
available data revealed no discernable reduction in the proportion of energy in the 
fundamental with increases in any of these parameters. Moreover, a similar 
investigation carried out in respect of the reflection coefficient of the beach also 
indicated no correlation of the kind sought. The only reasonably distinct correlation 
was between low proportions of energy in the fundamental and low values of the wave 
steepness ak. This rather unlikely result is probably explained by the inability of the 
wave gauges to resolve adequately very low waves. However, since there were many 
more runs at  low wave steepness for which the wave field was essentially linear, this 
conclusion is, a t  best, tentative. The important point is that, for higher values of ak, 
alh,  b/h and bk, the wave field was linear, as required for meaningful comparisons 
with the theory. 

5.3. Implications of the results for sediment transport on an erodible bed 

The results described in $4 have significant implications for sediment transport on 
an erodible bed. For the simple case of a patch of sinusoidal ripples, it has been 
demonstrated that the reflection of incident waves at resonance (k w il) gives rise to 
a partially standing wave pattern on the upwave side of the ripple patch (see figures 
4 and 8). If the bed is erodible, this suggests the possible development of new ripples 
on the upwave side of the patch, having the same wavelength as the existing ripples. 
Intuition suggests that accumulation of material will occur beneath antinodes of 
elevation, and that erosion will occur beneath nodes, though the situation may be 
complicated by the residual circulation cells which result from bottom friction under 
a partially standing wave structure (see Davies & Heathershaw 1983, $4.4). Previous 
observations of sand movement on a flat erodible bed beneath a partially standing 
wave structure have been made in the laboratory by Kennedy & Falcon (1965). 
However, the situation described by these workers was rather different from that in 
the present experiments, largely on account of the fact that their observations were 
made in far more active flow conditions. More recently, Nielsen (1979) has 
demonstrated ripple growth beneath standing waves, with sediment accumulation 
occurring a t  the antinodes of surface elevation. 

In order to examine the possible development of new ripples upwave of the existing 
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ripple patch, a single trial was carried out for a near-resonant case, in which a thin 
veneer of sand (mean diameter 235 pm) was distributed throughout the fixed ripple 
patch and on either side of it.  The details of this exercise have been discussed fully 
by Davies & Heathershaw (1983). It was observed that there was a tendency for new 
ripples to grow in those regions of the bed in x < - L with relatively small bottom 
velocity amplitudes, that  is in regions of the bed beneath the antinodes of elevation. 
In  particular, on the basis of a comparison between the predicted distribution of 
bottom velocity amplitudes and the known sediment threshold velocity amplitude, 
the observed regions of incipient ripple growth coincided quite closely with predicted 
regions of relatively small bottom velocity amplitude. A clear implication of this is 
that, in general, there may be a coupling between wave reflection and ripple growth 
on an erodible bed. However, for there to be such a coupling, accumulation and 
t-rosion must occur on the existing ripple patch in a manner which suggests ripple 
growth, rather than erosion, by the wave action. Unfortunately, i t  was unclear from 
the present single trial whether, in general, an existing ripple patch is likely to  be 
a stable, or an unstable, feature on the bed, particularly in resonant cases in which 
there is a significant amount of wave reflection. One complicating factor is the effect 
of variable grain size. I n  a related study involving a partially standing wave pattern 
above a rippled bed, Scott (1954) observed a tendency for coarser grains to be found 
in the region of the ripple crests, and for finer grains to be found in the region of the 
troughs. Such a grain-size distribution clearly affects the stability of the bed. This 
matter calls for further theoretical and experimental investigation. 

6. Conclusions 
Measurements in a wave tank have confirmed the principal conclusions of the 

studies of Davies (1980, 1982a) concerning the reflection of wave energy by a patch 
of sinusoidal ripples on an otherwise Aat bed. Firstly, i t  has been demonstrated that, 
for a given number of ripples in the patch, the reflection coefficient is oscillatory in 
the quotient of the surface (k) and ripple (I) wavenumbers, as expected from (25). 
Secondly, i t  has been demonstrated that a resonant interaction occurs when 2kll z 1 ,  
associated with which there may be a significant amount of wave reflection. At 
resonance, the reflected wave amplitude increases linearly with the number of ripples 
in the patch (equation (26)). Moreover, for a given number of ripples, and a given 
ripple steepness, the reflection coefficient increases both with increasing ripple 
amplitude and decreasing depth. 

Agreement between theoretical predictions and experimental results has been 
found to  be generally good also in comparisons made in resonant cases between the 
predicted and measured wave fields over the ripple patch itself. It has been 
demonstrated that the transition from a partially standing-wave pattern upwave of 
the ripple patch, to a purely progressive (outgoing) wave on its downwave side, is 
accomplished in an almost linear manner over the full extent of the ripple patch. This 
fact has been exploited in the procedure adopted in $2 to ensure a balance between 
the energy fluxes associated with the incident, reflected and transmitted waves. 

It was suggested by Davies (1980, 1 9 8 2 ~ )  that  the partially standing wave formed 
in resonant cases on the upwave side of the ripple patch might lead, on an erodible 
bed, to  the growth of the ripple patch in the upwave direction. An experiment carried 
out with sand in the wave tank has shown that areas of preferential erosion and 
deposition do indeed occur on the upwave side of the ripple patch, and that the 
distance between areas of deposition is equal to the original ripple spacing. Potentially, 
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a t  least, resonant interaction between surface waves and bottom undulations 
provides a mechanism for the growth of a ripple patch in the upwave direction, though 
further studies of the stability of the bedforms are required. The possibility of a 
coupling between wave reflection and ripple growth has significant implications for 
aspects of coastal protection. 
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